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The nondestructive method developed by the author with the use of a linear pulsed heat source makes it
possible to determine the thermophysical characteristics of solid materials on the basis of the portions of
thermograms that correspond to the regularization of the thermal regime in the region of the heater and
temperature detectors. Consideration has been given to the influence of the outflows of heat to a probe on
the error in determining the thermophysical characteristics of materials in the case where two semiinfinite
bodies are in ideal contact. A mathematical expression upon the fulfillment of which one may disregard the
heat loss to the material of the probe substrate has been obtained. In the work, consideration has also been
given to the problem of heat loss to the probe material in the case where it occurs only in the region of
the heater. It has been shown that the temperatures of the first and second bodies in the contact area will
become closer with time.

The determination of thermophysical characteristics is based on the physical model presented in Fig. 1. Ther-
mal action on the body under study with a uniform initial temperature distribution is carried out using a linear pulsed
heater. In the experiment, the temperature is recorded at a prescribed distance from the heater [1].

The theoretical foundations of the method of nondestructive testing of the thermophysical characteristics of
materials, which uses the model of a nonstationary process of heat transfer from a linear pulsed heat source, have been
presented in [1]. The method allows for different states of operation of a measuring system. The analytical solution of
the mathematical model of the process of heat transfer in the body under study from the action of a linear pulsed
source for the second ("operating") portion of the thermogram has the form [2]

T (r, τ) = 
q0

2πλ
 



ln 

4aτ

r
2

 − γ



 . (1)

Let q10 and q20 be parts of the power going to heat the material under study and the material of the probe
substrate respectively. The condition when the outflows of heat to the probe material are negligible may be written in
the form

q20

q10
 << 1 . (2)

To evaluate q20/q10 we consider the following problem.
Two semiinfinite bodies are in ideal thermal contact (Fig. 2). A linear heat source of constant power in the

form of a band of width 2h acts in the contact plane. The power released per unit area of the heater is equal to q
_

0
(or, in terms of the power per unit length of the heater, to q

_
0 = q0

 ⁄ 2h). Then the temperature field in this system at
any instant of time will be determined by solution of the following mathematical problem:

1

a1

 
∂T1 (x, y, τ)

∂τ
 = 

∂2
T1 (x, y, τ)

∂x
2  + 

∂2
T1 (x, y, τ)

∂y
2  ,   τ > 0 ,   − ∞ < x < ∞ ,   y > 0 ; (3)
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1

a2

 
∂T2 (x, y, τ)

∂τ
 = 

∂2
T2 (x, y, τ)

∂x
2

 + 
∂2

T2 (x, y, τ)

∂y
2

 ,   τ > 0 ,   − ∞ < x < ∞ ,   y < 0 ; (4)

T1 (x, y, 0) = T2 (x, − y, 0) = 0 ; (5)

T1 (x, ∞, τ) = T1 (∞, y, τ) = T2 (x, − ∞, τ) = T2 (∞, − y, τ) = 0 ; (6)

∂T1 (∞, y, τ)
∂x

 = 
∂T1 (x, ∞, τ)

∂y
 = 

∂T2 (∞, − y, τ)
∂x

 = 
∂T2 (x, − ∞, τ)

∂y
 = 0 ; (7)

T1 (x, + 0, τ) = T2 (x, − 0, τ) ; (8)

− λ1 
∂T1 (x, + 0, τ)

∂y
 − λ2 

∂T2 (x, − 0, τ)
∂y

 = f (x) ; (9)

f (x) = 











q0

2h
 ,   x < h ,

0 ,     x > h ;
(10)

∂T1 (0, y, τ)
∂x

 = 
∂T2 (0, —y, τ)

∂x
 = 0 . (11)

We integrate the equations of system (3)–(11) with respect to x 2 (−∞, ∞). For Eq. (3) we have

  ∫ 
−∞

+∞

 
1

a1

 
∂T1 (x, y, τ)

∂τ
 dx =  ∫ 

−∞

+∞

 
∂2

T1 (x, y, τ)

∂x
2

 dx +  ∫ 
−∞

+∞

 
∂2

T1 (x, y, τ)

∂y
2

 dx ,

Fig. 1. Diagram of the thermal system for the method with a linear pulsed
heater: 1) sample under study; 2) heater; 3) measuring probe; 4) thermocouples.

Fig. 2. Diagram for the linear heater in the form of a band, acting in the plane
of contact of two semiinfinite bodies.
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1

a1

 

∂ ∫ 
−∞

+∞

T1 (x, y, τ) dx

∂τ
 = 

∂2
 ∫ 
−∞

+∞

T1 (x, y, τ) dx

∂y
2

 + 2  ∫ 
0

+∞

 
∂2

T1 (x, y, τ)

∂x
2  dx ,

  ∫ 
0

+∞

 
∂2

T1 (x, y, τ)

∂x
2

 dx =
∂T1 (x, y, τ)

∂x



x=0

∞

 = 




see (7)
     (11)




 = 0 ,

1

a1

 

∂ ∫ 
−∞

+∞

T1 (x, y, τ) dx

∂τ
 = 

∂2
 ∫ 
−∞

+∞

T1 (x, y, τ) dx

∂y
2  . (12)

Analogously, for Eqs. (4)–(10) we obtain

1

a2

 

∂ ∫ 
−∞

+∞

T2 (x, y, τ) dx

∂τ
 = 

∂2
 ∫ 
−∞

+∞

T2 (x, y, τ) dx

∂y
2

 , (13)

 ∫ 
−∞

+∞

T1 (x, y, 0) dx = ∫ 
−∞

+∞

T2 (x, y, 0) dx = 0 , (14)

 ∫ 
−∞

+∞

T1 (x, ∞, τ) dx = ∫ 
−∞

+∞

T2 (x, − ∞, τ) dx = 0 , (15)

∂  ∫ 
−∞

+∞

T1 (x, ∞, τ) dx

∂y
 = 

∂ ∫ 
−∞

+∞

T2 (x, − ∞, τ) dx

∂y
 = 0 , (16)

 ∫ 
−∞

+∞

T1 (x, 0, τ) dx = ∫ 
−∞

+∞

T2 (x, 0, τ) dx ; (17)

− ∫ 
−∞

+∞

 



λ1 

∂T1 (x, 0, τ)
∂y

 + λ2 
∂T2 (x, 0, τ)

∂y




 dx = ∫ 

−∞

+∞

f (x) dx ,    ∫ 
−∞

+∞

f (x) dx = ∫ 
−h

+h
q0
2h

 dx =
q0

2h
 x


x=−h

h

 = q0 ,

− λ1 

∂  ∫ 
−∞

+∞

T1 (x, 0, τ) dx

∂y
 − λ2 

∂  ∫ 
−∞

+∞

T2 (x, 0, τ) dx

∂y
 = q0 . (18)
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We introduce the following integral characteristics:

S1 (y, τ) =  ∫ 
−∞

+∞

T1 (x, y, τ) dx , (19)

S2 (y, τ) =  ∫ 
−∞

+∞

T2 (x, y, τ) dx . (20)

With account for dependences (12)–(20), we may rewrite system (3)–(11) in terms of the new functions S1(y,
τ) and S2(y, τ) in the form

1

a1

 
∂S1 (y, τ)

∂τ
 = 

∂2
S1 (y, τ)

∂y
2  ,   τ > 0 ,   y > 0 ; (21)

1

a2

 
∂S2 (y, τ)

∂τ
 = 

∂2
S2 (y, τ)

∂y
2  ,   τ > 0 ,   y < 0 ; (22)

S1 (y, 0) = S2 (—y, 0) = 0 ; (23)

S1 (∞, τ) = S2 (− ∞, τ) = 0 ; (24)

∂S1 (∞, τ)
∂y

 = 
∂S2 (− ∞, τ)

∂y
 = 0 ;

(25)

S1 (+ 0, τ) = S2 (− 0, τ) ; (26)

− λ1 
∂S1 (+ 0, τ)

∂y
 − λ2 

∂S2 (− 0, τ)
∂y

 = q0 . (27)

We consider the physical meaning of the expressions −λ1 
∂S1(+0, τ)

∂y
 and −λ2 

∂S2(−0, τ)
∂y

.

Taking into account that −λ1 
∂T1(x, +0, τ)

∂y
 is the heat flux arriving at the first body, −λ2 

∂T2(x, −0, τ)
∂y

 is

the heat flux arriving at the second body, and −λ1 
∂S1(+0, τ)

∂y
 = −∫ 

−∞

∞

 λ1 
∂T1(x, +0, τ)

∂y
dx and −λ2 

∂S2(−0, τ)
∂y

 =

−∫ 
−∞

∞

 λ2 
∂T2(x, −0, τ)

∂y
dx are the quantities of power going to heat the first and second bodies respectively, we may write

− λ1 
∂S1 (+ 0, τ)

∂y
 = q10 ,    − λ2 

∂S2 (− 0, τ)
∂y

 = q20 . (28)

742



Thus, solving system (21)–(27) and subsequently determining −λ1 
∂S1(+0, τ)

∂y
 and −λ2 

∂S2(−0, τ)
∂y

, we obtain the

condition upon the fulfillment of which we may disregard the heat loss to the probe-substrate material. Also, it is
noteworthy that the dimension of the heater is not involved in this system and the right-hand side of expression (27)
involves the quantity q0. It may be inferred that system (21)–(27) will describe the processes for an ideal linear heat

source (2h → 0), too.
Problem (21)–(27) is equivalent to that on heating of two semiinfinite bodies at the site of whose contact a

plane heat source of constant power acts [3]. The solution of such a problem may be written in the form

S1 (y, τ) = 
2q0√τ
ε1 + ε2

 ierfc 




y

2 √a1τ



 ,   S2 (y, τ) = 

2q0√τ
ε1 + ε2

 ierfc 




y

2 √a2τ



 . (29)

Consequently, we have

q10 = − λ1 
∂S1 (+ 0, τ)

∂y
 = 

q0ε1

ε1 + ε2
 ,   q20 = − λ2 

∂S2 (− 0, τ)
∂y

 = 
q0ε2

ε1 + ε2
 . (30)

With account for (2), we obtain the expression upon the fulfillment of which we may disregard the heat loss
to the probe-substrate material:

q20
q10

 = 
ε2

ε1
 << 1 . (31)

It has been assumed that the first and second bodies are in ideal thermal contact. However, in actual practice, we will
always have thermal resistances between the probe and the sample under study in the contact plane. They will be
much lower in the region of the heater than those in the region of contact of the probe-substrate material and the ma-
terial under study, i.e., condition (31) will be overstated. In this connection, it is of interest to obtain expression (2)
on condition that heat is lost to the probe-substrate material only in the heater region.

We find the stationary field of heat fluxes in the probe–heater–sample system on condition that heat is lost to
the probe-substrate material only in the region of the heater.

Two semiinfinite bodies are in contact. Their contacting surfaces are heat-insulated. A linear heat source of
constant power in the form of a cylinder of radius R acts in the contact plane (Fig. 3).

The power released per unit area of the heater is equal to q
_

0 (or, in terms of the power per unit length of the

heater, to q
_

0 = 
q0

2πR
). Then the temperature field at any instant of time (on condition that the temperature gradient

along the z axis is absent) in this system will be determined by solution of the following mathematical problem:

Fig. 3. Diagram for the heater in the form of a cylinder, acting in the plane of
contact of two semiinfinite bodies.

743



∂T1 (r, ϕ, τ)

∂τ
 = a1 








∂2
T1 (r, ϕ, τ)

∂r
2  + 

1

r
 
∂T1 (r, ϕ, τ)

∂r
 + 

1

r
2 
∂2

T1 (r, ϕ, τ)

∂ϕ2







 ,

r > R ,  − 
π
2

 ≤ ϕ < 0 ,  τ > 0 ;
(32)

∂T2 (r, ϕ, τ)

∂τ
 = a2 








∂2
T2 (r, ϕ, τ)

∂r
2

 + 
1

r
 
∂T2 (r, ϕ, τ)

∂r
 + 

1

r
2 
∂2

T2 (r, ϕ, τ)

∂ϕ2







 ,

r > R ,  0 < ϕ ≤ 
π
2

 ,  τ > 0 ;

(33)

T1 (r, ϕ, 0)




r≥R

− 
π
2
≤ϕ≤0

 = 0 ,   T2 (r, ϕ, 0)




r≥R

0≤ϕ≤
π
2

 = 0 ; (34)

T1 (R, ϕ, τ)



τ>0

− 
π
2
≤ϕ≤0

 =T2 (R, ϕ, τ)



τ>0

0≤ϕ≤
π
2

 ; (35)

T1 (∞, ϕ, τ)



τ>0

− 
π
2
≤ϕ<0

 =T2 (∞, ϕ, τ)



τ>0

0<ϕ≤ 
π
2

 = 0 ; (36)

∂T1 (r, ϕ, τ)
∂ϕ




ϕ=−0
r>R
τ>0

 = 
∂T2 (r, ϕ, τ)

∂ϕ




ϕ=+0
r>R
τ>0

 = 0 ,   
∂T1 (r, ϕ, τ)

∂ϕ




ϕ=− 

π
2

r>R
τ>0

 = 
∂T2 (r, ϕ, τ)

∂ϕ




ϕ = 

π
2

r>R
τ>0

 = 0 ; (37)

− λ1
∂T1 (R, ϕ, τ)

∂r




τ>0

− 
π
2
≤ϕ<−0

 = q
_

10 ; (38)

− λ2
∂T2 (R, ϕ, τ)

∂r




τ>0

+0<ϕ≤ 
π
2

 = q
_

20 ; (39)

πRq
_

10 + πRq
_

20 = q0 . (40)

Under the assumption that the temperature gradient in each of the semiinfinite bodies in question is inde-
pendent of the coordinate ϕ and with account for condition (37), we obtain a problem equivalent to that given above.
Equations (32) and (33) with the corresponding initial and boundary conditions will be written as follows:

∂T1 (r, τ)

∂τ
 = a1 








∂2
T1 (r, τ)

∂r
2  + 

1

r
 
∂T1 (r, τ)

∂r







 ,   τ > 0 ,   r > R ,   − 

π

2
 ≤ ϕ < 0 ; (41)
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∂T2 (r, τ)

∂τ
 = a2 








∂2
T2 (r, τ)

∂r
2  + 

1

r
 
∂T2 (r, τ)

∂r







 ,   τ > 0 ,   r > R ,   0 < ϕ ≤ 

π

2
 ; (42)

T1 (r, 0)




r≥R

− 
π
2
≤ϕ≤0

 = 0 ,   |T2 (r, 0)




r≥R

0≤ϕ≤
π
2

 = 0 ; (43)

T1 (R, τ)



τ>0

− 
π
2
≤ϕ≤0

 =T2 (R, τ)



τ>0

0≤ϕ≤
π
2

 ; (44)

T1 (∞, τ)



τ>0

− 
π
2
≤ϕ<0

 =T2 (∞, τ)



τ>0

0<ϕ≤
π
2

 = 0 ; (45)

− λ1
∂T1 (R, τ)

∂r




τ>0

− 
π
2
≤ϕ<−0

 = q
_

10 ; (46)

− λ2
∂T2 (R, τ)

∂r




τ>0

+0<ϕ≤ 
π
2

 = q
_

20 ; (47)

πRq
_

10 + πRq
_

20 = q0 . (48)

Applying the Laplace transformation to (41) and (42), with account for (43) we obtain

d
2
T1L (r, p)

dr
2  + 

1

r
 
dT1L (r, p)

dr
 − 

p

a1

 T1L (r, p) = 0 , (49)

d
2
T2L (r, p)

dr
2

 + 
1

r
 
dT2L (r, p)

dr
 − 

p

a2

 T2L (r, p) = 0 . (50)

The general solutions of the differential equations (49) and (50) (Bessel equations) have the form [4]

T1L (r, p) = A1I0 



√p

a1
 r




 + B1K0 



√p

a1
 r


 , (51)

T2L (r, p) = A2I0 



√p

a2
 r




 + B2K0 



√p

a2
 r


 .

(52)

Expression (36) yields that A1 = A2 = 0. Then formulas (51) and (52) are transformed as
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T1L (r, p) = B1K0 



√p

a1
 r




 , (53)

T2L (r, p) = B2K0 



√p

a2
 r




 . (54)

The coefficients B1 and B2 will be determined from conditions (46)–(48):

πRλ1B1 √ p
a1

 K1 



√p

a1
 r




 + πRλ2B2 √p

a2
 K1 



√p

a2
 r




 = 

q0

p
 ,   B1K0 



√p

a1
 r




 = B2K0 



√p

a2
 r




 .

Solving this system for B1 and B2, we obtain

B1 = 

q0K0 



√pa2

 R





πRp
3 ⁄ 2 



ε1K1 



√pa1

 R




 K0 



√pa2

 R




 + ε2K1 



√pa2

 R


 K0 



√pa1

 R








 , (55)

B2 = 

q0K0 



√pa1

 R





πRp
3 ⁄ 2 



ε1K1 



√pa1

 R




 K0 



√pa2

 R




 + ε2K1 



√pa2

 R


 K0 



√pa1

 R








 . (56)

Substituting expressions (55) and (56) into formulas (53) and (54), we obtain the solution of problem (41)–
(48) in the domain of Laplace transformations:

T1 (r, p) = 

q0K0 



√p

a1
 r


 K0 



√pa2

 R




πRp
3 ⁄ 2 



ε1K1 



√pa1

 R




 K0 



√pa2

 R




 + ε2K1 



√pa2

 R




 K0 



√pa1

 R









 , (57)

T2 (r, p) = 

q0K0 



√p

a2
 r



 K0 



√pa1

 R




πRp
3 ⁄ 2 



ε1K1 



√pa1

 R




 K0 



√pa2

 R




 + ε2K1 



√pa2

 R




 K0 



√pa1

 R









(58)

and expressions for determination of the field of heat fluxes:

q
_

10 (r, p) = 

q0ε1K1 



√p

a1
 r



 K0 



√pa2

 R




πRp
3 ⁄ 2 



ε1K1 



√pa1

 R


 K0 



√pa2

 R



 + ε2K1 



√pa2

 R


 K0 



√pa1

 R









 , (59)
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q
_

20 (r, p) = 

q0ε2K1 



√p

a2
 r



 K0 



√pa1

 R




πRp
3 ⁄ 2 



ε1K1 



√pa1

 R


 K0 



√pa2

 R



 + ε2K1 



√pa2

 R


 K0 



√pa1

 R









 . (60)

Using the limiting theorem [3], we determine the stationary heat-flux distribution in the system in question:

q
_

10 (r) =  lim
τ→ ∞

  q
_

10 (r, τ) =  lim
p→ 0

  [pq
_

10 (r, p)] =

= lim
p→ 0

 














q0ε1K1 



√p

a1
 r




 K0 



√pa2

 R





πR 




ε1K1 



√pa1

 R


 K0 



√pa2

 R


 + ε2K1 



√pa2

 R


 K0 



√pa1

 R





















 ,

q
_

10 (r) = 
q0λ1

πr (λ1 + λ2)
 . (61)

Analogously, for expression (60) we may write

q
_

20 (r) = 
q0λ2

πr (λ1 + λ2)
 . (62)

The powers arriving to heat bodies 1 and 2 will be determined from the formulas

q10 = πRq
_

10 (R) = 
q0λ1

λ1 + λ2
 , (63)

q20 = πRq
_

20 (R) = 
q0λ2

λ1 + λ2
 , (64)

and condition (2) will take the form

q20

q10
 = 

λ2

λ1
 << 1 . (65)

Equations (61) and (62) make it possible to find the temperature distribution in the sample and the probe rela-
tive to the heater temperature (there is no steady-state temperature field in this system). In the case were r = R, we
have

T1 (R, τ) = T2 (R, τ) = Th (τ) ,

where Th(τ) is the heater temperature. Taking into account that

q
_

10 (r) = − λ1 
∂T1 (r, τ)

∂r
(66)
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and it is determined from (61), we may write, previously integrating (66) from R to r, for the first and second bodies

T1 (r, τ) = Th (τ) − 
q0

π (λ1 + λ2)
 ln 





r

R



 , (67)

T2 (r, τ) = Th (τ) − 
q0

π (λ1 + λ2)
 ln 





r

R



 . (68)

As is seen from expressions (67) and (68), the temperatures of the first and second bodies in the region of
contact will become closer with time.

NOTATION

A1, A2, B1, and B2, coefficients; a1 and a2, thermal conductivities of the material under study and the probe-
substrate material respectively, m2/sec; cρ1 and cρ2, heat capacity per unit volume of the material under study and the
probe-substrate material, J/(K⋅m3); 2h, bandwidth of the heater, m; I0(x) and K0(x), modified Bessel functions of the
first and second kind of zero order; p, complex variable; q0, power released per unit length of the heater, W/m; q10
and q20, powers going to heat the material under study and the probe-substrate material, W/m; q

_
0, power released per

unit area of the heater, W/m2; q
_

10 and q
_

20, power going to heat the material under study and the probe-substrate ma-
terial, W/m2; R, radius, m; S1(y, τ) and S2(y, τ), integral temperatures of the planes which are in parallel to the plane
of contact of two bodies and pass through the points with a coordinate y, K; T, temperature, K; x, y, z, r, coordinates,
m; ϕ, angle, rad; γ = 0.5772, Euler number; τ, time, sec; ε1 and ε2, thermal activity of the material under study and
the probe-substrate material, W⋅sec0.5⋅m−2⋅K−1; λ, thermal conductivity, W/(m⋅K); λ1 and λ2, thermal conductivities of
the material under study and the probe-substrate material. Subscripts: h, heater; 1, material under study; 2, material of
the probe substrate; L, functions transformed according to Laplace.
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